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ABSTRACT _/_ % _ _

The function of this thesis is to examine in detail the

logic involved in the design of a digital controller. In order

to reduce the logic requirements, a unique method of informa-

tion quantization is utilized. This quantization scheme, called

truncated logarithmic quantization leads to reduced information

storage requirements. Also, multiplication by a constant can

be handled as a natural consequence of using this quantizing

scheme, without requiring any additional logic. The adequacy

of this quantizing scheme in a control application is first sim-

ulated on a general purpose digital computer and then experi-

mentally verified on a two-capacity liquid level system.

Design considerations are discussed thoroughly. A

prototype has been constructed in which the design is divided

into eight functional blocks, each of which is implemented on

a 4" x 6" printed circuit board. To achieve this degree of

simplification, several special purpose digital logic elements

have been utilized.
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CHAPTER I

DIGITAL PROCESS CONTROL

Int roduction

There are several justifications for investigating pro-

cess control problems with a digital approach in mind. To

appreciate these it is well to review the approach to process

control which has generally been taken in the past, and to

nc_te the assumptions, limitations, and also the advantages

involved. This is the subject of the next section. Following

this the ultimate capability of computer control is discussed.

The intention of these two sections is to bracket the capabil-

ity of the digital controller approach studied in this thesis

between the capability inherent in classical process control

and that of computer process control. Hence the last section

of this chapter will summarize the position taken here.

Classical Process Control

In the field of process control, the classical approach

used by chemical and instrumentation engineers generally has

begun with the derivation of a sequence of reactions which will
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lead to the desired product. I Then a physical plant is set up

in which the individual reactions can be achieved simply by

maintaining process variables (temperature, pressure, con-

centration of ingredients, etc.) at predetermined set points

in individual subplants. The sequencing of the individual

reactions can be achieved by transporting the process ingre-

dients between several such subplants. In a batch process

which requires this sequencing, the ingredients are transferred

from one reactor to the next, with each reactor having its own

carefully controlled group of set points. A continuous process

achieves the same goal by passing the ingredients through a

continuous channel in which the set point conditions vary along

the channel but not with time. These two approaches are de-

l_icted in Figure i.i. The point to note is that in these

classical approaches the chemical engineers take pains to find

reactions which can be achieved by maintaining process

variables at predetermined set points. The instrumentation

engineer's contribution consists of monitoring the process

variables and trying to adjust these toward the desired set

points by manipulating control variables (flow rate of coolant

or fuel, ingredients, etc. ). This must be done in spite of
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process dynamics which can make the cause and effect rela-

tionship between the manipulated variables and the process

variables a complex function of time. Thus the instrumen-

ration engineer has classically been confronted with the problem

of controlling a dynamic process by measuring some variables

and using these measurements to control other variables.

Generally the chemical engineer can help the instru-

mentation engineer to the extent that he can design the process

reactions so that each important process variable is mainly

dependent on only one manipulated variable. When this de-

coupling of the variables is achieved sufficiently well, then

the overall control problem can be reduced to that of control-

ling set points in many more or less independent control

loops.

Classically the emphasis in the instrumentation indus-

try has been to provide controllers which assume a decoupled

system and which have as their main function the control of a

single loop. Such a controller must perform its function in

the presence of the dynamic characteristics of the reaction.

In addition it must operate in spite of changing characteristics

of the process as the reaction proceeds, incomplete knowledge



of the reaction kinetics, and the effects of the control going

on outside of its loop. In this classical approach these effects

can only be labelled as "ignorance of the process" and "dis-

turbances to the loop, " and the controller parameters ad-

justed to yield satisfactory control in spite of these.

It should be apparent that the acceptability of this

approach to process control depends heavily on having a

chemical engineer who can design a sufficiently decoupled

system in the first place.

Before closing this section, it is proper to point out

one of the features of the classical approach which will always

endear it to the process industries. If one of the control loops

should malfunction, there is the possibility of controlling this

loop manually, possibly with somewhat inferior control, and

thus limping along until the malfunction is repaired. Under

such circumstances and with suitable planning, it may be

proper to expect no down time for the process as a whole due

to instrumentation malfunctions.

Computer Process Control

The implication of the term "computer process con-

trol" which is meant to be left with the reader is a system of



instrumentation in which

i. the control problem can be treated as a whole

rather than as the net effect of controlling many

single loops,

2. the identification of the plant characteristics

can be carried out, at least partially, during

system operation and this information used to

improve control,

3. the computing capability is sufficient to carry

out any degree of optimizing control which can

be conceived by the instrumentation engineer

together with the chemical engineer.

Such a system provides the possibility of lifting the

constraint from the chemical engineer for providing a de-

coupled process. However this will be an advantage only if

the chemical engineer can use the extra latitude given him to

come up with less expensive reactions or a less expensive

plant layout.

The main effect on process performance should be the

tighter control which can be achieved. Aside from those im-

provements resulting from identification of the plant and from



optimizing control, there is also the gain resulting simply

because of the integrated point of view seen by a central con-

troller. No longer is it necessary for there to be autonomous

loops which cannot distinquish true disturbances from those

changes wrought by control in other loops.

As the future unfolds for computer process control,

the cost factor will surely come down from today's

$1, 000/loop at the 50-loop level. 2 However just as today

the success of classical process control depends upon the

ability of the chemical engineer to design a decoupled system,

so tomorrow the success of computer process control will

depend on the ability of the instrumentation engineer to build

reliable equipment and to organize this equipment so that

there can be various types of instrumentation malfunctions

without corresponding plant shutdowns. That is, there should

be designed into the instrumentation the capability of limping

along in spite of temporary instrumentation malfunctions.

The Digital Controller Approach

The view taken here is that there always will be a

place for classical process control. Such should be the case

for those processes in which a decoupled approach cannot be
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appreciably undercut in cost by any other approach. It

should also be the case where the size of the process does

not warrant the cost of computer control. Finally there will

probably always be processes where the simplicity of the

solution to the reliability problem justifies the use of the

classical approach.

The digital controller approach is an attempt to con-

tinue fundamentally in the classical tradition. Consequently

any proposed designs for a controller plus transducer for

input and actuator for output must compete with existing

systems of the basis of cost, performance, and reliability.

To meet this challenge, a digital controller has the

inherent advantage of requiring no special tooling; that is,

the techniques involved in construction are those of the

electronics industry. Today this means the construction of

printed circuit boards for component layout_ and either hand

wiring, machine wiring, or printed circuit wiring for inter-

connection of these component boards. In the future this will

also include the techniques of microminiaturization.

Another feature of the digital approach is the oppor-

tunity for providing only one controller to handle all control



problems which differ only in amplitude and time scaling.

Thus the input transducers can be monitoring either a small

range or a large range of temperature, pressure, flow or

other process variable. The speed of the process reaction

can be measured in seconds, minutes, or even hours. The

controlled variable may have to be controllable to within 1090,

190or 0.1%. In all these instances the digital controller can

provide the necessary time and amplitude scaling with no loss

of accuracy and perhaps with no appreciable difference in

equipment. To illustrate the simplest example of this, con-

sider a digital controller which samples the information

available from the input transducer. If the sampling interval

can be easily set equal to one-tenth (or any other fraction) of

the dominant time constant of the process, then it makes no

difference to the dynamic characteristics of the control loop

whether this dominant time constant is ten seconds or three

hours. The time scaling Of the controller, in order to fit it to

the process, consists simply of altering the sampling interval.

One final point of advantage is related to the future and

to computer process control. There are processes in which

it is advantageous to have a digital computer available to
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determine the best product mix in order to maximize profits

in the present market. For example in the petroleum indus-

try, one distilling column is used to produce many products.

Furthermore the ratio of gasoline to diesel fuel and to crude

oil which maximizes profits fluctuates with market prices

from day to day. But since these product ratios depend on the

set points of the process, it will be useful to have digital

controllers which can accept the new set points directly from

the digital computer.

In conclusion, three advantages of the digital con-

troller approach are lack of special tooling costs, versatility

in operation, and simplicity of use with a supervisory digital

computer in a large, multiloop process. Work in this area of

single loop direct digital control has been actively pursued by

the author's advisor, Professor H. W. IV[ergler, since October

1962. The purpose of this thesis is to investigate how a specific

method of quantizing information can be used to reduce the

logic required for a digital controller and to investigate the

effect of this method of quantization upon the performance of

the controller.



CHAPTER II

TRUNCATED LOGARITHMIC QUANTIZATION

Introduction

The distinquishing characteristics of a single loop

digital control system can be explained with the help of Figure

2.1. Here the digital set point is simply a number. The pur-

pose of the control system is to drive the plant or process

until its output, as measured by the digital transducer, is

equal to the set point. The subtractor generates a number

corresponding to the difference between the set point and the

output. This number, which represents the error in the out-

put relative to the set point, is designated the system error.

The digital controller has available to it this error at the pres-

ent instant as well as the error at any previous instants which

it has taken the trouble to store away. By using this error

information the digital controller generates a digital control

signal which will tend to drive the plant toward zero error in

spite of the dynamic characteristics of the plant and in spite of

disturbances acting on the plant.

Figure 2.2 shows a more specific digital control system

ll
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similar to the one studied in this thesis. Note that the infor-

mation from the digital transducer is sampled periodically.

This characteristic is not implied by the system being a digital

system, but it is a helpful characteristic for the control of a

dynamic plant; that is, a plant in which the process variable

does not respond immediately to changes in the controlled

variable. The digital controller has control of this sampling

process as indicated by the dotted line.

The digital control signal during the n th sampling in-

terval,_mn, is a function of En, the error at the n th sampling

instant, and of En_l, the error at the n-i th sampling instant.

The equation implied by this figure is

/_m n = K E E n + K_E (En - En_I) (2-1)

Note that to implement this equation, the controller must

carry out four functions:

i. subtraction between set point and plant output,

2. storage of the previous error,

3. multiplication by a constant,

4. addition and subtraction of signed numbers.

The quantizing technique presented in the next section

is designed to reduce the storage requirements of the controller
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and to facilitate multiplication by a constant, In doing this the

configuration of the controller is changed to that of Figure 2. 3.

Here the term (LOG EJ is used to indicate the truncated

logarithmic encoding of the present error. Since this en-

coding is logarithmic, the desired multiplication of the error,

E n, by a constant, KE, is indicated here as a summation with

LOG KE, the logarithm of K E. The decoder now carries out

an exact antilog operation, but since (LOG En> is not truly

the logarithm of E n, the result of this decoding is not truly

KEE n , and so it is denoted as KEE n .

Definition of Truncated Logarithmic Quantization

Truncated logarithmic quantization is most easily de-

fined by a table comparing typical inputs and outputs to a

truncated logarithmic encoder as shown in Figure 2.4a. This

table is shown in Figure 2.4b. The binary numbers which are

expressed with just zeros and ones can be converted to the

more familiar decimal form shown by using the weighting

e quation:

E n decimal = 25A6 + 24A 5 + 23A4 + 22A3

+ 21A2 + 20A 1 (2-2)
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LINEAR

QUANTIZATION

En

Truncated

Logarithmic

Encoder

TRUNCATED

LOGARITHMIC

COG En_

a) A Truncated Logarithmic Encoder

E n

Binary Decimal

000000 0

000001 1

000010 2

000011 3

000100 4

000101 5

000110 6

000111 7

001000 8

001111 15

010000 16

011111 31

I00000 32

-000111 -7

-001000 -8

<LOG En>

De cimal Binary

-3

-4

0 000

1 001

2 010

2 010

3 011

3 011

3 011

3 011

4 I00

4 I00

5 I01

5 i01

6 ii0

-011

-i00

b) Typical Input-Output Pairs

FIGURE 2.4 TRUNCATED LOGARITHMIC QUANTIZATION
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The powers of two in this equation weight the different Ai's

where A i is the ith bit of the binary number (A i is a zero or a

one). Thus for example,

000110binary = 32x0 + 16x0 + 8x0 + 4xl

+ 2xl + Ix0 = 6 decimal

The key to the truncated logarithmic encoding scheme

lies in noting that <LOG En> is just a number equal to the

position of the most significant "one" in the binary represen-

tation of E n. For example, the most significant "one" in the

binary number 000110 lies in the third position from the right.

Hence it is encoded as binary 011 (which is equal to decimal

three).

Note that this encoding scheme is not one-to-one; e.g.,

there are three other numbers besides 000110 which are en-

coded as 011. This will result in a savings in the storage

requirements since, for example, any fifteen bit number plus

sign can be quantized into a four bit number plus sign. Of

course, information is lost in the process, but it is the con-

tention of the author that for many control purposes the

amount of information remaining is sufficient to afford good

control. This will be investigated more thoroughly toward
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the end of the chapter.

The name "truncated logarithmic quantization" is de-

rived from the equation for this encoding scheme:

(0
<LOGEr)--

If E n = 0

If E n _ 0

(2°3)

Thiswhere LOG 2 l]_nlis the logarithr_a to the base 2 of IEnl.

will in general be an irrational number if F.n is not a power

of two. The brackets, < > , are meant to indicate truncation,

or cutting off, at the decimal point, to leave the greatest

included integer. For example, (3.9965) = 3.

Encoding Algorithm

One way in which the truncated logarithmic quanti-

zation of the error can be formed has already been indicated.

First the error can be formed using linear quantization and

then it is only necessary to count over to the most significant

"one" in this error. However in the implementation it might

be convenient to be able to avoid having to form, and store,

the error in its linearly quantized form.

One instance where this would be convenient occurs in

many process control applications where it is desirable to
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have the controller located in a control room which might be

quite remote from the digital transducer. If the digital in-

formation consists of a ten bit binary number, then it could

be transferred to the controller from the digital transducer in

parallel as in Figure 2.5a. This has the merit of simplicity;

however it also requires stringing ten wires (plus a ground

wire) between the transducer and the controller. An alterna-

tive approach is shown in Figure 2.5b in which only one wire

is needed to transmit the same information; however it re-

quires extra logic associated with the transducer to achieve

the required time-sharing of the wire. With this serial

transmission, only one bit of information will be available at

a time in the controller for forming the truncated logarithmic

error. This information could be stored to form again the

complete number. On the other hand, this storage logic can

be saved if the truncated logarithmic error can be formed

"on the fly" during the serial reception of the information.

To illustrate the ideas needed for a serial encoder

consider the examples of binary subtraction given in Figure

2.6. The problem is to determine where the most significant

"one" of the difference will be if the minuend and the
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FIGURE Z. 6 EXAMPLES OF BINARY SUBTRACTION
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subtrahend are provided one bit at a time. Since the most

significant "one" of the difference is desired, it is appropriate

to consider the numbers as serial information available one

bit at a time, most significant bit first. In Figure 2.6a, the

first bits match and hence the first bit of the difference is

zero. Similarly the second, third and fourth bits match,

yielding zeros in the difference. The fifth bits are mis-

matched and note that the most significant bit of the difference

occurs in this bit. Now look at Figure 2.6b. This is almost

the same example as Figure 2.6a except that the eighth bits

are mismatched in the opposite sense. Note that here the

most significant "one" of the difference occurs in the sixth

bit. Next look :at Figure 2.6c and 2.6d and note that a mis-

match followed immediately by mismatches of the opposite

sense shift the most significant bit of the difference to the

right. Again the exact position of the most significant "one"

of the difference depends upon later mismatch conditions.

The boxes enclosing two bit positions in each example

are intended to focus attention upon the two bit positions in

which the most significant "one" of the difference must occur
i

due to the first mismatch and to any immediately adjacent
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mismatches of the opposite sense. To determine in which of

these two positions the most significant "one" of the difference

occurs, it is convenient to consider the subtraction process as

the net result of two separate subtractions. Thus in each of

the examples of Figure 2.6 consider the subtraction of the six

bit numbers formed by omitting the four bits to the right of

the boxes. In every case the difference is binary I0. Now

the only way the last four bits, which were momentarily

omitted, can affect this result is to "borrow one, " in which

case the difference will be reduced by one to binary 01. But

the criterion for "borrowing one" is whether the sign of the

subtraction of the last four bits is different from the sign of

the subtraction of the first six bits. This in turn depends upon

the sense of the most significant mismatch in the last four

bits. The arrows of Figure 2.6 are used to indicate the sense

of the important mismatches in each subtraction.

The complete serial encoding process is summarized

in Figure 2.7. This figure describes the process in flow

diagram form.
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Decodin$ and Overall Operation

As was pointed out in Figure 2. 3, it is necessary to

decode numbers expressed in truncated logarithmic form in

order to achieve quasi-linear operation. If the inverse of

equation 2-3 is used, the results will be that of Figure 2.8.

If this decoding operation is very involved, then the savings

in hardware achieved through the merits of the encoding

scheme could all be lost because of the decoding. Fortunately

a method is possible in which one unit, a "Logarithmic Pulse

Generator, " can be utilized to carry out all three decoding

operations as well as the required multiplications by constants.

The purpose of this section is to describe the operation of the

Logarithmic Pulse Generator and to indicate how it can be

used to generate the required controller output, Am n.

The fundamental operation of the Logarithmic Pulse

Generator is shown in Figure 2. 9. Note that the input is a

string of pulses which can be turned on at some time after the

generator has been reset. To make use of this generator for

decoding, consider the configuration of Figure 2. i0. Assume

that it is desired to decode (LOG En) = 4. A proper decoding,

as seen from the chart of Figure 2.8, is 8. Before switch A
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is closed at t=0, the generator is reset and the down counter

(a counter which counts down to zero) is preset to the desired

(LOG En) = 4. When switch A is closed at t = 0, the pulses

which go into the Logarithmic Pulse Generator are also used

as the DECODED OUTPUT, in pulse form. The LOG. OUT-

PUT pulses count the counter down until the contents of the

counter is zero. This opens switch B, which in turn cuts off

any more pulses from the clock to the DECODED OUTPUT or

to the Logarithmic Pulse Generator.

At this point it might be questioned how the DECODED

in pulse form can be used to produceAm n. For thisOUTPUT

purpose a stepping motor forms an ideal digital actuator. It

gives an output rotation of its shaft which is proportional to

the number of input pulses it receives. In addition, with very

little supplementary logic, the stepping motor can accept

pulses at an UP input which will step it in one direction, or

it can accept pulses at a DOWN input which will step it in the

opposite direction. Making use of this, the stepping motor

can be used as an exact adder-subtractor; that is, if it re-

ceives 2018 UP pulses interspersed with 2015 DOWN pulses,

then it will step UPa net of exactly 3 steps.
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To get the scale factors, K E and K_E , the Logarith-

mic Pulse Generator is provided with two other features.

The first feature scales the input pulse rate to provide sub-

f

multiples, --_--, of the input pulse rate as shown in Figure

2. ii, This provides a simple way for multiplying E n by an

integral multiple of one-half. The other feature gives a way

to multiply _n by integral multiples of two. Consider the

effect of inhibiting the first LOG. OUTPUT pulse on the oper-

ation of the system shown in Figure 2. I0. Now the counter

will not be counted down to zero until the sixteenth input pulse.

Thus the number of output pulses has been multiplied by two.

By inhibiting the first two LOG. OUTPUT pulses the DECODED

OUTPUT will be multiplied by four. Figure 2. iI shows sche-

matically an INHIBITING SWITCH which can inhibit from zero

up to the first six LOG. OUTPUT pulses. Thus it can provide

a multiplier of from unity to sixty-four.

These ideas are all tied together in Figure 2. 12, which

shows schematically the complete generation of the output.

The block labelled ANTICOINCIDENCE insures that the step-

ping motor will not be asked to deal with two pulses arriving

simultaneously. For simplicity, the output gating to account
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for the signs of E n and En_ 1 is not shown.

Performance in a Control System

It is not enough that truncated logarithmic quantization

should lead to a somewhat simpler implementation as con-

pared with that needed for another controller employing linear

quantization. It is also necessary that the resulting controller

be capable of providing good control. To investigate the per-

formance of this controller, this section is devoted to the

derivation of the transfer function of an approximately equiv-

alent linear continuous controller. Much of the discussion

here is included to indicate those conditions which are

assumed in the approximating process. The section following

this will then be devoted to a digital computer simulation

study of the control of a specific plant.

For the purpose of defining the dynamic characteris-

tics of the controller, it is convenient to lump the stepping

motor (which acts as the controller's adder-subtractor) with

the controller and to consider each step of the motor as one

quanta of output, m n. Then the output position after the

change wrought by the pulses coming during the nth sampling

interval is given by the difference equation:
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where

mn = ran. I + Am n (2-4)

Am n : K EEn + K/_E(En - _-I (2-5)

In this equation K results from inhibiting LOG. OUTPUT

pulses from the Logarithmic Pulse Generator as in Figure

2.12, while K E and KAE are implemented with the scaling

switches shown in that same figure.

The above equations will now be manipulated to yield

a difference equation form which approximates a differential

equation. If T is defined as the sampling interval, then from

equation 2-4

m n - mn_ I Amn

T T

Substituting equation 2-5 into this yields

(2-6)

mn - mn-i KK E ,

T : _ En + KK_ En- En-1T (2-7)

Now it is necessary to digress because the ultimate

goal here is to find the transfer function of an approximately

equivalent linear continuous controller. Before this can be

n.

done, some approximate way must be found for relating E n to

e(nT) and for relating En " En-1 to d--e(nT) where e(t) is a
T dt

continuous function of time and represents the difference
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between the set point and the actual output before quantizing

and sampling. Figure 2.13 illustrates the effects of quan-

tization and decoding on e(nT) to give E_. The question

which must be answered is, what is the slope of the straight

line through the origin which yields the "best" fit to this

stepped curve? The criterion of "best" in this instance is

difficult to define since what is really desired is similar

performance from a linear controller and from one with this

quantizing effect.

fined by

or E n

The choice shown in Figure 2.13 is de-

iT-

e(nT)

e(nT) = •707 e(nT)

(z-8)

(z-9)

This choice has been made rather arbitrarily on the basis

that when E n is large, then the true e(nT) will lie in the

approximate range

@

l_j__ (_-E_) _ e(nT) _ _ (_2"E_)

That is, the maximum error in the approximation of 2-8 is

about 41%. While the choice of the proper slope to use has

been somewhat arbitrary, note that this slope certainly lies

within the bounds of

(2-10)
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o. soo < o. 7o7 < 1.ooo tZ-ll)

dictated by the straight lines in Figure 2.13.

The next problem requiring attention is to relate

E_ * d
- En-I to _e(nT). Here the problem is somewhat
T dt

more involved because there is not only the scaling problem

of the previous paragraph but also a problem requiring time

averaging to achieve an approximate equivalence. For exam-

ple, Figure 2.14 shows an arbitrary e(t) versus time together

with the corresponding d_._._e and also En - En-1 The
dt T

discontinuous nature of this latter signal means that it can

never be equivalent to the continuous de when looked on
dt

only from instant to instant. However in a control environ-

ment this instant to instant equivalence is not necessarily

required providing there exists an average equivalence.

Consequently if the averaging effect is permitted to take place

without distortion due to the intermittent bursts of information

which characterize this signal, then the problem reduces to

the scaling problem of the previous paragraph.

The scaling problem for this difference factor can be

resolved in much the same way as it was previously for the

proportional factor. This leads to the approximate
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relationship:

Average - _ Average 1 . de (2-12)

Two important qualifications on this result are:

1. the sampling interval, T, must be sufficiently

small relative to the dominant time constant

of the plant;

2. the output must not saturate.

The first requirement is really equivalent to the condition

needed to reconstruct a continuous curve from sampled values;

it is necessary that the curve be fairly predictable between

samples. The most important factor affecting the second re-

quirement is whether or not the stepping motor is driven to

its limits so that it can step no farther, resulting in lost

pulses. If this happens then the averaging effect deteriorates

in proportion to the amount of this "saturation. "

Finally an approximately equivalent linear continuous

model for the controller plus stepping motor can be obtained

by substituting equations 2-9 and 2-12 into equation 2-7 and

replacing mn- mn'l with din. This yields
dtT

dm _ K KiE 1 1 de

dt T _e + KK/_E_- dt (2-13)
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The corresponding transfer function can be written

M (s) KI
- Kp + -- (2-14)

Z (s) s

which is the form of a proportional-plus-integral (P-I) con-

troller. The coefficients are given by

(2-15)

KKE (2-16)

and Ki- 47T

where, again, T is the sampling interval,

K_]_ are defined by equation 2-5.

and K, K s, and

Digital Computer Simulation

The purpose of this simulation study is to compare the

operation of a controller employing truncated logarithmic

quantization with that of a controller using the more natural

linear quantization. To make this comparison meaningful,

the two systems are operated with identical sampling rate,

plant characteristics, and controller settings except for an

overall gain factor of 1 in the controller with linear quanti-

zation to provide the equivalence approximation of the pre-

vious section.

The plant which is simulated has a transfer function of
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1
G(s) =

(s+l)2

This particular form is taken in anticipation of the experi-

mental studies performed on the implemented controller. Ex-

cept for time and magnitude normalization this transfer func-

tion is the same as that for the linearized experimental plant.

To use this normalized plant in the simulation studies, one

approach consists of using the equivalent pair of difference

equations relating the output, Cn+l, and its derivative, Cn+l,

at the n+l th sampling instant with these values plus the input,

nan, at the n th sampling instant. Thus beginning with

c (s) 1
o (s) = ----- - (z-18)

M (s) (s+l)z

and considering m n to be a step of m n quanta, then

m_n (Z-ig)sZC(s) - SCn - Cn + 2sC(s) - 2c n + C(s) = s

or C(s) =

m n
s C n + _n + Z cn +

(s+l)z

s i m n

(s+l)_ Cn + _ (Cn + _-Cn) + s(s+l) Z
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C(s) =
(s_'l) n + (s+l)Z ('_n + z %) +

+ (s+l) +
m n (2-20)

The inverse Laplace Transform of this expression, c(t-nT),

can now be found, its derivative taken to give c(t-nT) and both

of these evaluated at t = (n+l)T,

results are

Cn+ 1 = (l+T) e-Tcn

giving Cn+ 1 and Cn+l" The

T e-T_n + (I+T) e"+ - m n

(z-zi)

_n+l -T -T • -T (2-22)and = -T e cn + (i - T)e cn + T e m n

The block diagrams of the two systems are depicted on

the one generalized diagram of Figure 2.15. For both systems

(2-23)
en = r - cn

* (2-24)
mn = Ke el_ + _e(e_- en_ 1) + ran. 1

In addition, for the linearly quantized system, e n is related to

e n as in Figure 2.13. Also

1

KG A _ _ (2-25)

For the truncated logarithmic quantized system, e n is related

to en as in Figure 2.13. Also
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KGA = I (2-26)

The results of this comparison are shown in Figures

2.16 and 2.17 for two different magnitudes of step input and

for controller settings of T = 1/8, M e = i/4, K/_ e = 2. Note

that the responses are not identical but that the character of

the two are similar. The important point is that good control

is possible using truncated logarithmic quantization.
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CHAPTER III

DIGITAL CONTROLLER DESIGN

Introduction

One of the fundamental objectives of this study has

been to design and construct a prototype of the digital con-

troller. The digital logic elements (flip-flops, AND gates,

etc. ) available for design purposes have not been constrained

to include only a few fundamental components. Rather, any

special purpose logic element has been utilized provided

only that it would yield a significant reduction in the total

logic required. On the other hand, a mild constraint to the

design was incurred by the decision to break the total con-

troller function up into a number of functional blocks, and then

to realize each of these functional blocks in one special pur-

pose printed circuit board.

This chapter begins with the input and output constraints

imposed upon the controller design. Following this, the phi-

losophy of operation of the entire controller is discussed.

This operation is then broken down so that it can be carried

out by eight functional blocks, and each of these blocks is

48
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examined in detail. Finally the chapter is closed with photo-

graphs of the implemented controller together with close-ups

of typical printed circuit boards used for the functional blocks.

Input and Outpu t Constraints

The design of the controller has been constrained to

accept the output from the digital transducer in serial binary

form, most significant bit first, as shoxvn in Figure 2.5b.

Furthermore the sampling rate is assumed to be controlled

by an adjustable clock in the controller which sends a pulse to

the digital transducer. This pulse then initiates the serial

transmission from transducer to controller.

The controller output is assumed to be in a form which

is compatible with the small amount of logic required for

driving a stepping motor. The form used consists of Step Up

pulses to step the motor in one direction and Step Down pulses

to step it in the opposite direction.

Controller Operation and Philosophy

The design requirements of the controller have been

dictated to a large degree by the requirements of the logic em-

ployed for generating the controller output. Thus once the
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previous errors.

the present error,

decoding scheme of Figure 2.12 was decided upon, this dicta-

ted the need for two down counters for holding the present and

This in turn led to the need for storage of

(LOG En> , which is needed during the next

sampling interval to form

of Figure 2.12 is needed.

<LOG En_l> . The controlling logic

It, in effect, opens and closes the

various switches shown there. Provision must be made for

obtaining anticoincidence among the three pulse trains which

go to the stepping motor. In addition <LOG En> must be for-

med from the set point information and the digital transducer

info rmation.

The main factor which led to this scheme of output

generation was the reduction in logic required when compared

with alternative approaches. However there are two other ad-

vantageous features which result from this approach.

i. The controller parameters, K, KE, and KAE

are all digital in nature. This means that use of

the controller requires absolutely no calibration.

2. The three output pulse trains which go to the

stepping motor are interspersed with each

other. The alternative of transmitting these
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pulse trains to the stepping motor one after another

can produce erroneous results during the sub-

traction of two of the pulse trains if the stepping

motor runs up against either end of its range of

travel. If this happens, pulses will be lost,

yielding an incorrect output. By interspersing

the three pulse trains, the stepping motor must

move, during each sampling interval, more

steadily toward the final position.

Operation of the controller is divided into two modes.

The preparation mode operation is depicted, in abbreviated

form, in Figure 3. i. Operation begins with the generation of

the sampling pulse, P, which initiates the transmission of the

transducer output to the Input Block. In the Input Block the

form of this information is changed and ten timing pulses, Ts,

are derived from it. The Serial Set Point is a functional block

which distributes these ten timing pulses, one to each of ten

wires. By means of the set point switches shown in Figure

3.1, this sequence of ten pulses is converted into a serial rep-

resentation of the switch positions. This set point information

is then compared with the transducer output information in the



5Z

zo
hl

14J

I II

dl

o ....., _._i_,) _..,,,__;

I I

Bo_=o .!L,J=

l _ w_o I _
_0-11

I _ I
L ..... _J



53

Error Forming Circuit. The resulting error ends up in the

E n Counter and its sign ends up in the SIGN n memory ele-

ment. Meanwhile the previous error, which has been kept

in Storage, is transferred to the En_ 1 Counter, The sign of

the previous error has also been transferred to the SIGNn. 1

memory element. When the present error is finally formed,

two things happen. First this present error is stored in

Storage as well as in the E n Counter. Second, the Error

Forming Circuit emits a signal, "Begin Operate Mode. "

The logic for the operate mode is depicted in abbre-

viated form in Figure 3.2. The points to be noted here are the

functional blocks and the important signal lines which are in-

volved and the close relationship between Figure 3. 2

and Figure 2.12. The Stop Logic block performs the function

of the switches shown in Figure 2.12, The Output Gating block

carries out the anticoincidence function and also manipulates

the step sign, depending on the signs of E n and En_ 1. One

point of discrepancy between Figure 3.2 and 2.12 is the output

information of the two counters. In Figure 2, 12 the counters

counted down to zero and stopped. Here the counters are

counted through zero to 1111 and stopped there because the
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resulting logic is simpler. This necessitates counting each

counter down one step before starting the output generation.

Logic Element Descriptions

In this section the logic elements and signals of Figure

3.3 and 3,4 will be discussed. Because some of the logic

elements are sensitive to voltage levels, as in Figures 3.3a

and 3.3b, these will be designated as (+) and (-) levels respec-

tively. Other of the logic elements are sensitive to a voltage

transition from -12 volts to 0 volts, as in Figure 3.3c and

3.3d, This will be designated a (-)/(+) transition.

A purely level logic element is shown in Figure 3.4a.

This can be considered an AND gate, as designated by the dot

inside the symbol. To be interpreted in this fashion, it is

necessary to take note of the reference polarities on the inputs

and the output of the symbol. These indicate that the output,

C, will be a (-) level if both inputs A AND B are (+) levels

(otherwise C will be a (+) level).

Figure 3.4b indicates a pulse generator with t.wo

steering gate inputs. The output, H, will be a negative pulse

any time certain input conditions are met. One way to obtain

an input pulse is to trigger the D-E steering gate input with
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a (+) level on E and a (-)/(+) transition on D. Thus for this in-

put the pulse generator is really an AND gate for a (+) level

and a (-)/(+) transition, where the output is a negative pulse in-

stead of a level as in the AND gate of Figure 3.4a. Another way

to obtain an output pulse is to trigger the F-G steering gate in-

put with a (+) level on F and a (-)/(+) transition on G. Thus the

pulse generator behaves like an OR gate in that either the

D-E steering gate input OR the F-G steering gate input can be

used to trigger a negative pulse output. In general a pulse

generator can have as many of these steering gate inputs as

desired. On occasion a pulse generator will be shown with

only a single arrow on the input, as in Figure 3.4c. The input

here is the (-)/(+) transition, and it is implied that the level

input, which is not shown, is always connected to 0 volts.

The next logic element, shown in Figure 3.4d, is a

flip-flop. This element has two outputs, Q and R, which are

levels that are always opposites of each other. That is, if Q

is a (+) level, then R must necessarily be a (-) level. The Set

and Reset inputs to a flip-flop are steering gates and thus they

are shown exactly the same as for the pulse generator. The

difference between the two devices lies in the output behavior.
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If a flip-flop is set (by triggering on the K-L input, for exam-

ple) then the Q output will go to the (-) level and remain there.

Any further Set inputs will not affect the output. However

when the flip-flop receives a Reset input, then the Q output

will return to the (+) level. Again if the flip-flop is already re-

set, then further Reset inputs will not affect the output. Fi-

nally there is a special Trigger input, T. Any time a (-)/(+)

transition enters the flip-flop at T, the output will change.

That is, it will go from the Set condition to the Reset condi-

tion or vice-versa.

The one-shot of Figure 3.4e is a logic element which

behaves, for the W output, exactly like a pulse generator.

However it has two features which give it some versatility.

First and foremost the output pulse width can be made very

much longer than the output pulse width of the pulse generator.

Secondly not only is the normal W output available, but also

its inverse or complement,

output X.

The final element,

running pulse generator.

a positive pulse, is available at

shown in Figure 3.4f, is a free

Its output is a steady stream of pos-

itive pulses (-12 volts to 0 volts and then back to :-12 volts)
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with constant pulse width but adjustable pulse rate. This type

of "clock" element has been used in the design rather than a

free running multivibrator (a device with a circuit configura-

tion similar to a one shot or a flip-flop) because of the vast

range in pulse rate which can be achieved while using only one

potentiometer.

With the description of these logic elements completed,

the detailed logic in each functional block will be described.

Input Block

This functional block, shown in Figure 3.5, performs

two distinct functions. One is to generate the pulse, P, which

is used to initiate the flow of serial information from the digi-

tal transducer. Three other outputs, P', P", and P'", are

generated to reset various other functional blocks. Because

some of the resetting cannot be done prematurely, there is an

inhibit input, denoted "Reset 1," which comes from the Stop

Logic. Until this is a (+) level, the outputs P and P' are inhi-

bited. In normal operation this inhibit is never called upon to

function. However if it is attempted to set the sampling rate

faster than the controller output can be generated, then this in-

hibit signal prevents what would otherwise be faulty operation.
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The function of the upper half of Figure 3.5 is des-

scribed by the four waveforms on the input and the three out-

puts. Three types of information are picked out of the input

waveform, which consists of either negative or positive pulses

about 0 volts. The top pulse generator is used in an interest-

ing manner to pick out the positive input pulses. The level

logic element below this picks out the negative input pulses and

feeds the result into a pulse generator in order to provide

negative output pulses. In both of these cases the outputs are

short duration negative pulses triggered from the leading edge

of the input pulses. The resistor-transistor OR gate is used

to generate a wide output pulse whenever there is either a 0 or

a 1 input pulse. It must operate in spite of the difference in

pulse amplitudes and in spite of the difference in the levels in-

volved.

Incidently the letters encircled on the edges of Figure

3.5 denote terminals on the printed circuit board connector

into which this board is plugged.

Serial Set Point

Figure 3.6 shows this functional block. The five flip-

flops together with the two AND gates shown in symbolic form
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synthesize a counter which counts in the five bit Lippel code

shown in Figure 3.7. The ten outputs of these five flip-flops

are used to generate ten sequential pulses from -6 volts to +6

volts and back to -6 volts. The resistor-diode AND gate gives

an output which rises to 0 volts upon reception of the tenth in-

put pulse.

Error Forming Circuit

This functional block implements the flow diagram of

Figure 2.7. In addition it must generate an output to set the

flip-flop corresponding to the sign of E n and an output, "Begin

Operate Mode. "

Since the sequencing of events in this circuit is suffi-

ciently complex to warrant it, attention will first be given to a

transition map. This is a formal representation of a sequen-

tial process which has a finite number of inputs, outputs, and

states. These terms can best be defined with reference to the

specific transition map for this circuit, shown in Figure 3.8.

As drawn, this is a five state machine with each state repre-

sented by a circle enclosing a number. The circuit begins in

state 0 and remains in this state as long as each bit of the

serial set point is the same as the corresponding bit of the
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Reset

First Input Pulse

Second Input Pulse

Third Input Pulse

Fourth Input Pulse

Fifth Input Pulse

Sixth Input Pulse

Seventh Input Pulse

Eighth Input Pulse

Ninth Input Pulse

Tenth Input Pulse

A B C D E

0 0 0 0 0

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 0

FIGURE 3.7 LIPPEL CODE COUNTER SEQUENCE
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STATES

0

1

2

3

4

INPUTS

A

B

C

D

E

OUTPUTS

S

X

Start and until first difference

First difference

Opposite difference immediately
Match after state 1 or state 2

Stop

Match

+ difference

- difference

Same difference

Oppo site difference

Set sign (If 0 i - 0 o _ 0}
Count down one unit

A

FIGURE 3.8 INITIAL TRANSITION MAP FOR THE

ERROR FORMING CIRCUIT
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transducer output.

the little loop, labelled A:X, above state 0.

that the two bits are the same, or matched,

This sequence of events is indicated by

The A indicates

while the X indi-

cates that the binary counter mentioned in Figure 2.7 should

be counted down one unit. When finally the two bits are mis-

matched, operation shifts to state 1. If the bit from the trans-

ducer output, @o, is a one while the bit from the set point, e i,

is a zero, then this represents a negative error which in turn

is represented by the setting of the SIGN n flip-flop. This set

of conditions is denoted by C:S on the transition map. Note

that the circuit is sequential in that this first mismatch is the

only time when use is made of any information to set the SIGN n

flip -flop.

The operation of the circuit continues until state 4 is

reached, at which time the encoding of the error is complete.

To synthesize a circuit which will perform the function

mapped here there are several steps to be considered. So far

the map has served the useful purpose of defining the operation

of the circuit explicitly. The first question to be asked is

whether a simpler transition map will do the same job. A for-

mal technique presented by Huffman, Mealy, and Moore 3 solves
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this problem and, as it turns out, the reduced map of Figure

3.9 will perform the same function. The justification for this

is that in all cases the outputs are the same in the two maps

regardless of the sequence of the inputs.

The next step of the synthesis is called the "assign-

ment problem" and at the present time there is no general so-

lution to it, although Hartmanis 4 and others 5 have presented

techniques for obtaining good assignments under certain re-

stricted conditions. The problem begins with the recognition

that to synthesize a sequential circuit having from 2N states

up to 2N+I-I states requires at least N binary memory ele-

ments, or flip-flops, This is true because each state can be

represented by one set of flip-flop conditions. For example,

the circuit of Figure 3. 9 requires at least two flip-flops, A

and B. An arbitrary assignment might have state 0 be repre-

sented by both flip-flops being reset, state 4 by both being set,

state i, 2 by A being set and B being reset, and state 3 by A

being reset and B being set. The idea behind the state assign-

ment problem is to select that assignment which leads to the

cheapest implementation including the input gating for the flip-

flops (in order to change state) and the output gating for the
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A:X E:X A

D _E:X

FIGURE 3.9 REDUCED TRANSITION MAP FOR THE

ERROR FORMING CIRCUIT
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circuit (in order to generate the required outputs; e. g., Set

Sign and Count Down). This circuit also has the Begin Oper-

ate Mode output which has not been needed for consideration

until now.

The final solution to the state assignment problem was

made quite intuitively and involves the use of one more flip-

flop than the minimum number needed, However it was felt

that the resulting simplification in the input and output gating

would more than make up for this, This solution is shown in

Figure 3.10 and the three state-determining flip-flops are

labelled FIRST DIFF. (which is not set in state 0 but which is

set thereafter)_ MATCH AFTER DIFF. (which is set in state

3 and may or may not be in state 4), and STOP (which is set

in state 4). Note that the Count Down output is given in two

parts. This is done because these are not the only count down

inputs to the E n Down Counter and so a savings in logic will

result if all of these inputs are ORed together all at once in

one pulse generator (in the Stop Logic functional block).

The remaining gating in the Error Forming Circuit is

used to form the different inputs indicated in Figure 3.8.
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Data Storage and the Reset Timin_

The storage and manipulation of the error data takes

place in the two functional blocks shown in Figure 3. ll, the

E n Counter Plus Signs, and Figure 3.12, the Storage Plus

En. 1 Counter. In each figure the four bit binary down counter

can be identified by the trigger inputs to the flip-flops. The

complex part to these circuits is the sequencing of operations

used to reset the counters and to perform the transfer of data.

For the transfer operation the "one" sides of the E n flip-flops

in Figure 3. ll are connected to the level inputs of the reset

steering gates of the four bit Storage register in Figure 3.12.

The timing diagram for resetting is shown in Figure 3.13, and

the numbers 1-4, indicating the sequential order of events,

are also used in Figures 3.11 and 3.12 as numbers within

boxes in order to help simplify the identification of the sequen-

cing.

Logarithmic Pulse Generator

This functional unit implements the operation indicated

in simplified form in Figure 2.9 and in more detail in Figure

2.11. The circuit is shown in symbolic form in Figure 3.14,

Some of the symbols are familiar (i. e., the flip-flops, the
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SEQUENTIAL

ORDER

SIGNAL

Reset i

or Overflow

COMMENTS

Generated in Stop Logic at

the completion of the Oper-

ate Mode ;

Resets E n Counter, En_ 1

Counter and SIGNn. 1 to zero

2 Reset 2 Generated in Stop Logic from

Reset i;

Sets E n Counter and En_ 1

Counter to all ones.

p1!

or P'

or P

Generated in Input Block at

the sampling instant;

Resets E n Counter to binary

i010;

Resets SIGN n, and in so doing

transfers its contents to

SIGNn- 1;

Sets Storage register to iiii

and in so doing transfers its

contents to En_ 1 Counter;

Resets Serial Set Point and

Error Forming Circuit;

Begins Preparation Mode.

4 Stop E n Generated in Stop Logic from

the Begin Operate Mode

signal;

Transfers the information just

formed in the E n Counter to

the Storage register (using

non-de structive readout).

FIGURE 3.13 TIMING SEQUENCE
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one-shot, and the steering gates) while others are not.

In the entire controller this circuit is the most impor-

tant example of an instance where the use of special purpose

digital circuitry could greatly reduce the amount of circuitry

required. The AND gates and also the steering gates with the

extra inhibit inputs of Figure 3.14 are described in more de-

tail in Figure 3.15. For each output a truth table is given

which indicates the behavior at that output as a function of all

possible combinations of inputs. The Level Out truth table

simply indicates that this device does indeed act as an AND

gate if the reference polarities are assumed as shown on the

inputs and output of the symbol. The Pulse Out truth table

indicates that this circuit actually does behave as a steering

gate unless the inhibit input, I, is at -12 volts, in which case

the output is inhibited.

Figure 3.14 consists of a ten bit binary up counter

which counts through 1024 input pulses before the Overflow

output sees a (-)/(+) transition. By picking off the outputs of the

first few counter stages, the scaling required to implement M E

and _ is achieved. The Log. Output picks out the (+)/(-)

transition in any flip-flop when all flip-flops to the right of this
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flip-flop are in the zero state (i. e. , when the lines coming

out of the "1" sides of these flip-flops are all at 0 volts). The

AND gates diagnose when this latter condition is met and use

this information as the level input on the appropriate steering

gate. That this behavior will yield the desired operation can

be seen from the counter contents and the output required as

shown in Figure 3.16 and comparing this with the desired out-

put of Figure 2.11.

To implement a K Multiplier Switch, the Inhibit Input

of Figure 2.11 can be wired using any of three approaches.

The first is to use a special purpose shorting switch which

performs the function shown in Figure 2,11, tying successive

steering gate inhibit inputs to -12 volts. If such a switch is

difficult to obtain then a second approach is to use an ordinary

six pole, seven position switch and to wire it up to perform

this function. A third solution, and the one used in the con-

troller, makes use of a single pole, seven position switch plus

diodes mounted between the successive positions, as in Figure

3.17. A second function uses this same switch to turn off

the controller output pulses, and thus to provide a K = 0 gain

position.



80

Input

Pulse

0

1

Z

3

4

5

6

7

8

Counter Contents

(Least significant bit on left)

Log.

Output

0000000000

.................. Pulseist

1000000000

.................. Pulse2nd

0100000000

Ii00000000

OOlO000000

3rd Pulse

i010000000

0110000000

iii0000000

.................. 4th Pulse
0001000000

FIGURE 3.16 CORRELATION OF COUNTER CONTENTS AND

LOG. OUTPUT
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INHIBIT OUTPUT

OR

OUTPUT GATING

®

• I

K= 0 I 2

INHIBIT INPUTS TO

LOG. PULSE GENERATOR

• v|

• 6
4 8 16 32

-12V

FIGURE 3.17 WIRING FOR K

MULTIPLIER SWITCH
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Output Gatin_

The Output Gating logic of Figure 3.18 can be consid-

ered in several parts. First, the "heart" of the operate mode

circuitry is the free running pulse generator (FRPG) shown.

This provides the input to a Gray code counter, which in turn

generates four anticoincident pulse trains, to, tl, t2, and t3.

The t0 pulses go to the Logarithmic Pulse Generator via the

Stop Logic, and after appropriate gating some of these pulses

return as K E and K/_ E pulses. Then if (+) levels are present

on Stop E n and Stop En_l, the three anticoincidence flip-flops

are set. This gating corresponds to the "ZERO" switches of

Figure 2.1Z. Thus the setting of these flip-flops occurs at

approximately the same instant as when the to pulses occur.

To space these pulses apart so that the interval between the

Step Up and the Step Down pulses going to the stepping motor

is not too short, the three anticoincidence flip-flops are reset,

in sequence, by tI, t_, and t3 and the (-)/(+) transitions so pro-

duced are gated by SIGN n and SIGNn_ 1 into the Step Up and the

Step Down pulse generators.

The Inhibit Output signal comes from the K Multiplier

switch and is -i_ volts with K = 0. This prevents the three
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anticoincidence flip-flops from being set and thus inhibits the

output.

Stop Logic

In this functional block, shown in Figure 3.19, the

three flip-flops, Stop, Stop E n and Stop En_l, perform the

function of the switches of Figure 2.12. The Stop flip-flop to-

gether with the Log. Input pulse generator serves to turn on

and off the tO pulse train to the Logarithmic Pulse Generator.

This pulse train is started by the "Begin Operate Mode" signal.

It is stopped by the Overflow signal from the Logarithmic

Pulse Generator which indicates that the ten bit counter has

counted through its complete cycle of 1024 counts to all zeros.

The Stop E n and Stop En_ 1 flip-flops operate in con-

junction with the steering gates on the three anticoincidence

flip-flops in the Output Gating circuit either to pass or to in-

hibit the K E and the F_E pulse trains. Recall that these pulse

trains are allowed to pass after the start of the operate mode

and until the E n counter or the En_ 1 counter is counted down

through zero to all ones. To make %he result correct, an ex-

tra count has to be subtracted quickly at the very beginning of

the operate mode. This is accomplished by using the (-)/(+)
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transition which results when the Stop E n or Stop En. 1 flip-

flops are reset at the beginning of the operate mode. Thus

the Count Down E n pulse generator has four inputs: two inputs

come from the Error Forming Circuit and are used during the

preparation mode; a third input forms this single pulse at the

beginning of the operate mode; the fourth input is the Log.

Output from the Logarithmic Pulse Generator which is gated

through by the Stop E n level until the En Counter has counted

through zero.

The Stop Delay pulse generator allows a delay between

the last count down pulse during the preparation mode and the

single pulse mentioned above which comes at the very begin-

ning of the operate mode.

Phy sical Realization

One of the goals of the implementation was to create a

device which not only works as planned but which also has a

finished appearance. This was one of the chief reasons for

developing the circuitry in eight functional blocks, each on a

separate printed circuit board, Figure 3.20 is a photograph of

the finished controller, illustrating the construction as a plug-

in module.
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FIGURE 3 . 2 0  THE DIGITAL CONTROLLER 
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Of the eight printed circuit boards constructed, the

most densely packed, and therefore the one which determined

the 4" x 6" size of the boards, is the Logarithmic Pulse Gen-

erator shown in Figure 3.21. The last board constructed, and

thus perhaps the one with the most finished appearance, is the

Error Forming Circuit of Figure 3.2Z.

The modular construction utilized in placing compo-

nents such as flip-flops and pulse generators on the boards

has the advantage of simplifying the problems of servicing.

It also tends to lead to a board layout in which some areas are

very densely packed with components while other areas are

quite bare. This may be considered a disadvantage if a more

random arrangement of elements leads to smaller boards.

Note for this controller that since the most dense board, the

Logarithmic Pulse Generator, is also very iterative, it was

probably most compactly constructed on a modular basis.
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FIGURE 3 . 2  1 LOGARITHMIC PULSE GENERATOR CARD 
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FIGURE 3 . 2 2  ERROR FORMING CIRCUIT CARD 



CHAPTER IV

EXPERIMENTAL RESULTS

Introduction

In this chapter the digital controller is applied to the

control of a two-capacity liquid level plant. After a descrip-

tion of the plant is presented, consideration is given to the ad-

justing of the four controller parameters, K, K E, K/_ E, and

T. Then the closed loop performance of the system is inves-

tigated.

Plant Characteristics

The two-capacity liquid level plant is shown in Figure

4.1. The water level in the lower barrel is monitored with a

float which drives the digital encoder. The flow rate into the

upper barrel is adjusted by the pulses from the digital control-

ler which step the stepping motor and thus also the valve con-

nected to the water supply. This plant is a fair approximation

to many industrial processes, and as such it provides a valid

testing ground for the controller.

The plant dynamics are investigated in Appendix III

91
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STEPPING 
I 

I 

I 

FIGURE 4 . 1  THE EXPERIMENTAL PLANT 
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where a linearized model is derived. For convenience the

transfer function is repeated here:

O o (s) Kp output quanta

M (s) (1 + Tps) 2 step
(4-I)

where Kp = 0.72 (4-2)

and Tp = 428 seconds (4-3)

Adjustin_ the Controller Parameters

The controller has been designed to implement equa-

tion 2-5, repeated here:

K "'Am n = K ]DEn

In the implementation of this equation,

+ K/_E(En - En_ 1

the parameters can

take on the following values

K = 0, 1,2,4,8, 16,32

(4-4)

K E, K/_ E = I, i/2, I/4, I/8, 1/16, 1/32, 1/64 (4-6)

The sampling rate pulse generator is designed to provide

sampling rates in the range

3 seconds < T < 240 seconds (4-?)

However the lower limit on the sampling rate is contingent

upon the speed of output generation as follows. The rate of

the output rate pulse generator, f pulses/second, cannot be

greater than the maximum rate at which the stepping motor

(4-5)
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can step reliably, or else the stepping motor will not be a

reliable adder-subtractor. Now during the operate mode

every fourth pulse from this generator goes to the Logarith-

mic Pulse Generator, and the operate mode lasts until I024

pulses have been counted there.

interval must be greater than

1024 x 4 pulses

f pulses
second

Consequently the sampling

= 4096 seconds (4-8)
f

In addition the preparation mode may last as long as it takes

to transmit the ten serial bits of information from the digital

transducer to the controller, perhaps one second.

In order to adjust these parameters, consider the

photograph of the controller, Figure 3.20. Note that K, K E,

K_E' and T are all adjustable on the front panel. The ad-

justment for T is made by turning the recessed potentiometer

until the time interval between two lightings of the SAMPLE

RATE light is equal to T.

The output rate, which must be tailored to the stepping

motor, can be set once and for all on a specific process.

Accordingly its adjustment is made by turning a Trimpot

mounted on the Output Gating functional block and monitoring

the output rate pulse generator by connecting a scope to the
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terminals located on top of the chassis.

In setting the controller parameters, note that there

is some redundancy between K, KE, and KAE. For example,

the settings K = 8, K E = 1 and KAE = 1/4 yield the same con-

troller equation 4-4 as the settings K = 16, K = i/2, and
E

KAE = 1/8. For small inputs or disturbances the above sets

of settings are truly equivalent. However for large inputs the

controller cannot generate more thap 1024K E output pulses

;!¢

corresponding to the term KKEEn. or 1024KAE output pulses

corresponding to either of the terms EK/k E E n or KEAE En_ I.

Consequently, given values of EK E and EE/_E, it is advisable

to eliminate the redundancy by making M E and KAE as large

as possible within the range of equation 4-6 and then setting

K accordingly.

The view taken here for obtaining a set of controller

settings_ given a specific plant, is to use any quick rule of

thumb to get some settings that give fairly good control and

then to iterate toward better control by checking the actual

response to specific settings. One rule of thumb, presented

by Grinten, 6 gives values for the parameters of a proportion-

al plus integral linear continuous controller. By using these
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together with the approximate equivalence relations for this

controlle r,

are derived

KK E =

equation 2-14 through 2-16, the following relations

Kp Tdead
(4-9)

KK/xE =
_2- Tlag

Kp Tdead

(4-1o)

where T is the sampling period and where Kp, Tlag, and

Tdead are defined from an approximation to the unit step res-

ponse of the plant of the form:

I t - Tdead 1
q (t) = Kp 1 - e Tlag u (t - Tdead) (4-11)

Figure 4.2 shows the approximation by this model to the plant

step response shown in the Appendix Figure A. 3.2.

The sampling period, T, should be chosen to be small

relative to Tdead + Tlag in order to approximate continuous

c ont rol.

Closed Loop Performance

Using the values for Kp, Tdead , and Tlag found from

Figure 4.2, the following equations are obtained by substitu-

tion into equations 4-9 and 4-10:
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T
KKE - 80 (4-12)

K KAE = 9.8 (4-13)

The controller parameters can be made to fit equation 4-12

exactly, but equation 4-13 can only be approximated. This is

all right since the purpose of the "rule of thumb" is only to

obtain a set of approximate controller settings. Consequently

a resulting set is

T = 80 seconds

K=8

i

KE= T

K_E =I

(4-14a)

(4-14b)

(4-14c)

(4-14d)

The response of the system to a 125 quanta step under

these conditions is illustrated by the solid curve, a, in Figure

4.3. In order to appreciate the effect of each controller

parameter on the system response, each of the other curves

(b, c, d, and e) i11ustrate the response which results when

one of the parameters of equations 4-14 is changed by a

factor of two.

Ideal test conditions for this comparison would have

the plant open loop disturbance response with no variation at

a11. Then the desired cause and effect relationship would
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lead to the exact step response of the system. However the

actual open loop disturbance response is illustrated in Figure

4.3f. This indicates that the other curves are seeing not only

the 125 quanta step input but also variations having an RMS

value of about 5 to i0 output quanta due to disturbances in the

pressure of the water supply. As long as the open loop dis-

turbance response is slowly varying relative to the response

time of the closed loop system, little of this is reflected in

the closed loop response curves.

Figure 4.3c illustrates that halving the effective pro-

portional gain of the controller (refer to equations 2-14 and

P-15) gives a slower, looser response. On the other hand

Figure 4.3d illustrates that halving the effective integral gain

(refer to equations 2-14 and 2-16) leads to a slightly faster,

tighter response, Finally by decreasing the loop gain, as in

Figure 4.3e, the response becomes relatively sluggish,

Figure 4.3b illustrates that doubling the sampling

period to 160 seconds tends to give a response with the effec-

tive integral gain halved, similar to Figure 4.3d. However

this response is somewhat looser than Figure 4, 3d because

the sampling interval is larger relative to the Tdead + Tlag
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of 943 seconds found in Figure 4. Z.

Summary

This thesis has been directed toward the logical design

of a digital controller. Although it has been considered in use

with a specific plant and compared to a conventional analog

controller, no claim is made comparing its performance in

general with that of an analog controller. The objective here

was completely one of simplifying the logic involved in the

controller, and the use of truncated logarithmic quantization

has been justified on the basis of a simulation study and heu-

ristic reasoning alone. A thorough analytical study of the

performance of a control system utilizing truncated logarithmic

quantization is beyond the scope of this thesis. However the

controller appears capable of providing good control in those

applications where a linear, proportional plus integral con-

troller would also provide good control.

The design of the digital controller has been described

and the complete operation divided into eight functional blocks,

each of which is implemented on a separate 4" x 6" printed

circuit board. To indicate the amount of logic used in another

way, the total number of transistors used is 128.



APPENDIX I

PROGRAM FOR SIMULATION STUDY

In this appendix the digital computer program used in

the simulation studies will be presented and explained briefly.

The program is written using the BALGOL compiler. This is

the version of the international computer language, ALGOL,

which is used on the Burroughs 220 computer. Figure A.I.I,

a copy of the program, is most easily understood by referring

to Figure A. I.2, the corresponding flow diagram.

To start, there are four things the computer must do

before going into the double iteration loop represented by the

two diamonds. Data must be read in, values of the variables

must be initialized, the plant parameters must be calculated,

and the heading for the output format must be written.

As the computer enters the double iteration loop for

the first time, the two indices, I and J, are set to 2 and 1 re-

spectively. The I index accounts for the successive samples

in the sampled data control system, while the J index distin-

quishes between the linearly quantized system (J = i) and the

truncated logarithmically quantized system (J = 2). The

i02
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-_ead Data:
T, Logke, Logkdele, Cstart

I Initialize: , ... , M(I,I)=Ke=

Calculate Plant Parameters and Starting Values:

A= , (.. _ DC{Z, 2)=
T

'Write Heading; [Write Out

(2, i, i00

j=(1, 1, z)

f

K=Oainadj No Yes | K=I. 0

(=.707) -j-Antilog(;)

C(J, I+l)= , DC(J, I+l)=

I Logquant( ; )!N°
Yes

I Quant(l, I+l)=,- , - C (i, 1+1)
!

FIGURE A. i. 2 FLOW DIAGRAM OF COMPUTER PROGRAM
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computer performs instructions until the encircled Beta is

reached.

At Beta the loop test is performed for the index J.

The computer asks: is J equal to (or greater than) 2? If so,

continue on past the encircled Beta. If not, go back to the J

diamond, increase J by one, and continue through this loop

again. After going through the loop with J = 2, the computer

passes through the encircled Beta, writes out the output data

and reaches the I loop test point denoted by the encircled

Alpha. This completes the computation and write out for both

systems (J = 1 and J = 2) at one sampling interval. Now the

next sampling interval is brought into consideration by in-

creasing I by one. When I = I00 the computer passes through

the encircled Alpha, returns to the start of the program and

asks for new data. The program terminates when no more

data is available.

Inside the loop the computer immediately comes upon

the test on J represented by the oval encircling the question

9

J - 2. The factor K then adjusts for the higher gain of the

linearly quantized controller in an effort to provide similar

performance from the two systems. The expression
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Antilog( ; ) indicates the use of the subroutine shown in

Figure A.1. 3. This takes the integer variable written in place

of the word "Logcabin" in Figure A.1.3, decodes this accor-

cling to the algorithm shown, and sets the variable written in

place of the word "Cabin" equal to this result.

Next, for either J = 1 or J = 2, the computer evaluates

the plant input variable, M(J, I). Then the next values of the

plant output, C( , ), and its derivative DC( , ) are calculated

using equations 2-21 and 2-22 derived in Chapter II.

The computer completes the computations of the inner

loop by taking one of two paths depending on whether J = 1 or

J = 2. In either case the quantized system error, Quant(, ),

is formed. This assumes a system reference input of zero so

that the error is the quantized equivalent of the output times

minus one. To form the truncated logarithmically quantized

error, Quant(2, I+l), the computer utilizes the subroutine

described in Figure A. I. 4. To form the linearly quantized

error, Quant(l, I+l), the computer simply truncates that part

of the error to the right of the decimal point by storing the

floating point number, -C(I, I+l), in the integer address,

Quant (i, I+l).
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Cabin = 0

Antilog( Logcabin; Cabin )
I

No _ _ Yes

I
T

Return

|

Cabin = Sign(Logcabin) [

x 2 IL°gcabin[ - 1I
I

EXAMPLE: Logcabin = -4

1-41- i
Cabin = (-i)x 2

=-8

FIGURE A.I. 3 ANTILOG( ; ) SUBROUTINE
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Initialize:

Yes

I Test= Test x 2Logcabin= Logcabin + 1

Logquant( Cabin; Logcabin )

Logcabin= 0

T=I

Trunc= ] Cabinl

r,_ runc _-

I I No

Logcabin= Sign( Cabin

x Logcabin

Return

EXAMPLE: Cabin= -13. 996 (Input)

Then Trunc= 13 since Trunc is an integer.

The subroutine proceeds as follows:

Time Through

Iteration Loop Te st Logcabin

0 1 0

1 2 1

Z 4 2

3 8 3

4 16 4

4 -4

( Output is Logcabin= -4 )

FIGURE A. i. 4 LOGQUANT( ; ) SUBROUTINE
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integers in logarithmic form.

are related by the equation

Returning to the actual computer program, Figure A. i.i, it

should be noted that the controller parameters are entered as

Consequently K e and Logke

Ke= zL°g ke (A. 1-1)

The choice of entering Logke rather than K e was made in or-

der to avoid the problem of obtaining the correct integer for

Logke.



APPENDIX II

DETAILED CONTROL SYSTEM DESCRIPTION

Introduction
J

The function of this appendix is to discuss some de-

tails of the logical design of the controller (which were best

omitted from Chapter III for the sake of clarity) and to dis-

cuss the characteristics of the auxillary equipment used in

the experimental control system. Besides the plant, which

was discussed in the beginning of Chapter IV, this auxillary

equipment consists of the logic required to obtain the serial

output information from the digital encoder and also the logic

required to drive the stepping motor.

Controller Logic Details

One of the items which was not discussed previously

in Chapter III is the complete wiring schematic of the con-

troller. This is shown in Figure A. 2.1. As was done in

Chapter III, the letters encircled along the border of each

functional block represent printed circuit board connector

terminals. The eight-terminal connector shown at the top of

this figure is mounted on the back of the chassis and provides

ii0
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the power required by the logic as well as the input and out-

put signals of the controller.

The other item of consideration in this section is the

circuitry used for those logic elements which have been pre-

viously represented symbolically. Figure A. 2.2 shows the

flip-flop circuit, while Figure A. 2.3 shows the corresponding

steering gate. If a (-)/(+) transition enters on the Set input,

then the "1" Output transistor is turned off and the "1" Output

goes to -12 volts. In order to trigger this flip-flop (i. e., to

provide an input which will always change the state of the flip-

flop) it is only necessary to tie the level inputs of two steering

gates to the two outputs of the flip-flop. Then the two transi-

tion inputs of the steering gates are tied together to form the

trigger input.

Figure A. 2.4 illustrates the variety of pulse generator

circuits used in the controller. Note that there is one

steering gate configuration for use when the transition input

is a relatively narrow pulse and another configuration for

situations where this input is a (-)/(+) transition which is not

closely preceded by a (+)/(-) transition. The extra diode in the

first case allows the capacitor to charge quickly during the
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INPUT

SINGLE
GATED
I N PUT
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OR 40FS

-12V_ OV

TRANSITION

"12Ve-'_ i K

tel' -_ ._2N404

.006 MFD ,_

.12 Ve---_p---_

,005 MFD ,.L.
4t_

FOR INPUT PULSE WIDTH
OF LESS THAN 250F, S

-12 Ve--_ i K

.005 MFD ' ,,,1-
T

FOR INPUT PULSE WIDTH

OF MORE THAN 250p.S

SEVERAL
GATED
INPUTS

IK

MFD I _'1005

I
I

MORE INPUTS

FIGURE A. 2.4PULSE GENERATORS
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negative portion of the input pulse.

The light driver circuit, required to drive the rela-

tively low impedance lights from the higher impedance logic

circuits, is shown in Figure A. 2.5. In this circuit the light

is connected from the collector of the transistor to -12 volts.

Then if the input goes to -12 volts the transistor is turned on

and this turns on the light.

A resistor-diode AND gate is used in several of the

functional blocks and is shown in Figure A. Z. 6. The signs on

the symbol rnean that if both the A input AND the B input are

at zero volts then the output is at zero volts; otherwise the

output is at -12 volts.

There are two specially designed free running pulse

generators used in the controller. The one shown in Figure

A. 2.7 controls the output rate to the stepping motor. The

unijunction transistor 7 is used in a relaxation oscillator in

which the capacitor charges until this transistor fires. The

voltage across the unijunction transistor drops during the

capacitor discharge and this is used to form a pulse on the

output. By carefully biasing the output transistor_ the edges

of the pulse are kept steep. The pulse width is controlled by



I17

SYMBOL:

INPUT------,_
47K

6V
18K

v

OUTPUT TO
-- LIGHT

FIGURE A.2,5 LIGHT DRIVER
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SYMBOL

A ÷

+6V

A_

B L=

IN 462

IOK

C

FIGURE A.2.6 RESISTOR- DIODE
AND GATE
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SYMBOL: 0
FRPG

= OUT

UNIJUNGTION
TRANSISTOR

2N2646

" 0 IFFI •

_:280 •

d ,

IOK

_MEG.

=-12V

IK

2.2K_ N404

_V 2N2646

_22K

OUTPUT

OUTPUT

PERIOD

PERIOD

PULS E WIDT H =

RISE TIME =

, MIN. =

I MAX. =

90 MIGROSEG.

0.5 MICROSEG.

2.5 MILLI SEG.
60 MILL ISEC.

FIGUREA.2.7 FREE RUNNING
PULSE GENERATOR FOR
OUTPUT GATING
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the RC time constant of the discharge. Figure A. 2.8 shows

the free running pulse generator used for the sampling rate.

Here the pulse width is long because of the relatively high in-

ternal resistance of the tantalum capacitor. It is interesting

to note how steep the pulse edges are in spite of this.

Another special purpose logic circuit is the resistor-

transistor OR gate used in the Input Block and shown here in

Figure A. 2.9. The function of this gate is to provide one out-

put pulse for each input 0 or 1 pulse. To accomplish this,

two signals are first derived. One signal represents zeros as

small positive pulses above ground level and the other repre-

sents ones as large positive pulses above -1Z volts. The OR

gate input resistances and the bias from the +6 volt supply

are then chosen to switch the transistor off reliably whenever

one of these pulses occurs, and to turn it on in the absence of

either of these pulses.

Figure A. Z. 10 shows the resistor-diode OR gate used

in the Input Block. Figure A.Z.11 shows a transistor-resis-

tor-diode AND gate used in the Serial Set Point.

The one-shot used in the Logarithmic Pulse Generator

is shown in Figure A.2.12. This circuit is the same as the
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SYM BOL: OUT
FRPG

UNIJUNGTION

TRANSISTOR

:leoo_ jso
=-Bv_I+

i L i

IOK

I_MEG

',470,Q,

- 12V

IK

2N2646
OUt

N404

R 1¢

_x÷,,TE,,,._
,r RESISTANCE OF

_2N2646

*+6V

l,

:22K

OUTPUT PULSE WIDTH = 5 MILLISEG.

OUTPUT RISE TI ME • 0.5 MIGROSEG,

PERIOD , MIN. = 3 SEG,
PERIOD , MAX. = 240 SEG.

FIGURE A. 2.8 FREE RUNNING
GENERATOR FOR
BLOCK

PULSE
INPUT
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-12Y

I'S 18K _IK

+ (BIAS) "--

r'S
I I I

_'12 V

-12 V

OV

OV

, Q'S
OV

+_V

OV

÷l_V

T
I

OV

-12V

-12V

DON'T CARE

FIGURE A.2.9 RESISTOR-- TRANSISTOR
OR GATE FOR INPUT

BLOCK
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SYMBOL

A +

B__++ + O

B---'-H---

IOK

- 2K

G

FIGURE A. 2.10 RESISTOR- DIODE
OR GATE
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SYMBOL;

B -g_- "

-12V

IK

A_ N404.
B

IN462 J_

+6V

C

FIGURE A.2.11 RESISTOR-DIODE-
TRANSISTOR AND GATE
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I

IlK i22K I K

,L 4.7K I_ .OIMFD. I Q

2N N404

I _.6V

STEERING .GA'I'_E_,
INPUT

200 MIGROSEG. OUTPUT PULSE WIDTH

FIGURE A. 2.121ONE- SHOT
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flip-flop circuit but with one of the cross-over networks mod-

ified with an RC circuit to make it monostable.

Serial Output from the Encoder

One of the initial constraints placed on the design of

the controller was that it should accept serial data from the

encoder. The logic used to take the parallel information from

the encoder and put it in serial form is shown in Figure

A. 2.13. The pulse, 1D, from the controller begins the opera-

tion by presetting a ten bit shift register with the encoder

data. This pulse also resets the Stop flip-flop which then

gates pulses into a pulse generator. The pulse generator,

the scale-of-ten counter, and the Stop flip-flop form a little

loop which allows exactly ten pulses to be emitted by the

pulse generator. In this way ten shift pulses are generated

which place the encoder information, one bit at a time, on

the two lines labelled OUT and'O-D-T-(where these two lines

are complements of each other). Each pulse is also used to

set either flip-flop A or flip-flop B depending on whether the

OUT signal represents a one or a zero. These flip-flops are

used to control the output circuit in such a way as to obtain

an output, _o, of -9 volts is A is set, of +4.5 volts if B is set_
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and of 0 volts if neither flip-flop is set. The two output tran-

sistors operate as switches in which the 1 K ohm resistor acts

as a load while the remaining resistors provide the proper

biasing conditions.

Stepping Motor Logic

The stepping motor used in conjunction with the con-

troller is bifilar wound. This means that there are four

windings which are ninety degrees apart from each other

electrically. For convenience, the field directions due to the

energizing of these windings can be designated as 0°, 90 °,

180 °, 270 ° . Then in order to make the motor step in one

direction it is only necessary to make the field direction

change in increments of less than 180 ° (to avoid ambiguity)

and in either an increasing direction of field (e. g., 0°, 90 ° ,

180 °, 270 °, 0°, ...) or a decreasing direction of field (e.g.,

0°, 270 °, 180 °, 90 ° , 0°, ...).

There are three different ways in which the motor can

be stepped in each direction. First, a relatively low torque

stepping can be achieved by energizing one winding at a time

in the sequence 0°, 90 °, 180 °, 270 °, 0°, .... An alterna-

tive approach is to energize two windings at a time to obtain
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relatively high torque stepping. Here the sequence is 45°,

135°, 225°, 315°, 45° , ... where, for example, the 45° field

direction comes from exciting the 0° winding and the 90°

winding simultaneously. The higher torque is due to the

higher field strength which results from energizing two

windings at a time. A third mode of stepping alternates the

above stepping modes to obtain the sequence 0 °, 45 ° , 90 °,

135 ° , .... This mode alternates high and low torque steps

but it has the added feature of doubling the resolution of the

output.

The second mode of operation is used here because of

the simplicity of implementation and also because the higher

torque involved permits a higher stepping speed. In order to

produce the desired sequencing on the windings, note that

when the 0° winding is energized, the 180 ° winding is not and

vice-versa. Consequently the signals for energizing these

two windings are logical complements of each other and they

can be obtained from the two outputs of a flip-flop. A second

flip-flop can be used for the 90 ° winding and the 270 ° winding.

Then to step in one direction it is only necessary to join the

two flip-flops into a counter which counts in the sequence 00,
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0I, I i, i0, 00, .... This count sequence, in which only one

bit changes at a time, is called a two-bit Gray code. To step

the motor in the opposite direction requires the reverse se-

quence, 00, i0, ii, 01, 00, .... Figure A. 2.14 shows a two

bit bidirectional Gray code counter. The four outputs are

labelled "X. " In this figure the four circuits between the four

"X" points and the four "Y" points are identical. The emitter

follower provides current gain to drive the higher powered

transistor switch which in turn opens and closes the connec-

tion between the "Y" point and ground.

Since switching off the current in the stepping motor

windings produces a large inductive "kick, " the four diodes

provide an alternative path in which the current can decay

more slowly. However this reduces the maximum stepping

speed, so the 7.5 ohm damping resistor represents a compro-

mise between the maximum voltage which can be tolerated by

the switching transistors and the stepping speed.

This circuit will step the motor continuously at rates

up to 150 pulses/second before pulses are lost. However the

motor may skip pulses in starting up to this rate, so 100

pulses/second represents a safe maximum rate for use as an
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adder-subtractor in conjunction with the controller.



APPENDIX III

IDENTIFICATION OF THE PLANT

The Form of the Transfer Function

A common approach to this problem consists of two

steps. First the form of the equation between input and out-

put is derived from theoretical or intuitive considerations and

then linearized (if necessary). Then it only remains to eval-

uate the parameters in this linearized form from experimen-

tal data.

The form of the equation can be derived from a few

fundamental relationships for the plant, shown in Figure 4. i.

First, the rate out of either barrel increases with the head in

that barrel. Furthermore the head in either barrel is propor-

tional to the integral of the difference between the input flow

rate and the output flow rate. These two statements can be

expressed as

WOU T _ K 1 • Head (A. 3-1)

Head = KZ S (WIN - WOUT)dt (A. 3-Z)

Equation A. 3-1 is a linearized form of a nonlinear relationship

and therefore to be meaningful, Head should be measured from

133
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the operating point (e. g., the middle of the barrel). On the

other hand, equation A. 3-2 is an exact relationship, depen-

ding only on the liquid being incompressible and the barrels

being cylindrical. In order to obtain the plant transfer func-

tion, these two equations are converted to Laplace transforms.

Then for the upper barrel the ratio of WOU T

WOU T (s) 1

WIN (s) 1 + T u s

to WIN is needed:

(A.3-3)

1
where T u =

K 1 K 2
(A. 3-4)

For the lower barrel the ratio of Head to WIN

Head (s) KL

WIN (s) i + TLS

is needed:

(A.3-S)

1
where T L = • (A. 3-6)

K 1 K z

1
and K L = "7;"-. (A. 3- 7)

The time constants for the two barrels are given different sub-

scripts because the K's may be different for the two barrels.

Finally, a relationship is needed between the input

stepping of the motor, M, and the flow output of the controlled

valve. Since a linearized form is desired, it is only neces-

sary to write
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WVALVE(S)

M (s)
= K 3 (A. 3-8)

Also for the encoder

eo (s)
= K4 (A. 3-9)

Head(s)

Now it is only necessary to relate the various inputs

and outputs. Note that since in every case the liquid out of a

valve free-falls to the next container, there is no "loading"

by one stage upon a previous stage. Consequently the overall

transfer function is simply the products of the individual trans-

fer functions and can be written

O o (s) _ Kp output quanta (A. 3-10)

M (s) (i + TuS)(l + TLS) step

where T u and T L have been given previously, and

Kp = K LK 3K 4 (A. 3-ii)

One further simplifying condition has been utilized.

The valve between the two barrels and the valve out of the

lower barrel are adjusted so that when the stepping motor is

set at the midpoint in its range of travel, the two barrels are

both half filled. The Kl'S of the two barrels are then consid-

ered to be approximately equal. Furthermore K Z depends

only on the cross sectional area of a barrel, which is the same
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for the two barrels.

Tp,

Consequently a single time constant,

(1 + Tps) 2

can be defined and the plant equation written as

(90 (s) _ Kp output quanta

M (s) step

where Tp = T u --T L

(A.3-1Z)

(A. 3-13)

Fittin G the Parameters

The second step in the plant identification process,

that of determining the parameters of equation A. 3-12 can be

handled by finding the individual parameters of each compo-

nent of the plant, or alternatively by using experimental in-

put-output data and fitting Kp and Tp to this data. This latter

approach is to be preferred since it avoids the accumulation

of errors which can occur with the former approach.

The step response of the transfer function given by

equation A. 3-12 is

t

e o = Kp 1 - 1 + TpTp

If this is evaluated at several points the results are

@o (i)= 0. 265 Kp

8 o (2) = 0. 593 Kp

eo (3) = 0. 802 Kp

@o (_) = 1.000 Kp

(A.3-14)

(A. 3-15a)

(A.3-1 b)

(A. 3-15c)

(A.3-1Sd)
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The last equation provides a simple test for evaluating Kp,

and given a curve which obeys equation A. 3-14 exactly, any

of the first three equations can be used to evaluate Tp. In

the case of real data, a visual fit to the step response using

all four points is to be preferred. To obtain satisfactory

results requires that the step response be large relative to

disturbances to the plant (e. g., water pressure variations in

the supply line) and yet small enough for the assumption of

linearity to be sufficiently valid. (In the event that these two

conflicting requirements should prohibit the use of this ap-

proach, the fit can be made to the more exact impluse re-

sponse found by the much more involved procedure of cross-

correlating the input and the output under closed loop opera-

ting conditions).

Figure A. 3.1a shows a typical disturbance response

of the plant which results from variations in the water supply

pressure. This characteristic is given in order to explain the

oscillatory tail of the open loop response shown in Figure

A. 3.1b. This open loop response was made with a 512 step

input, or one-eighth of the total valve travel. The output

change of 368 quanta represents about a nine inch change in
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200

I00

15
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MOTOR INPUT DISCONNECTED)

FIGURE A3-1 PLANT RESPONSE
CHARACTERISTICS
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the output level. Both the input and the output changes were

centered about the midpoints of their range of travel.

The points of equation A. 3-15 are shown encircled on

Figure A. 3. lb. Note that these do not fit exactly, presum-

ably because of the nonlinearity of the plant.

which result from this fit are:

Kp = 0, 72

Tp = 428 seconds

The values

(A, 3-16)

(A. 3-17)



APPENDIX IV

PARTS LIST FOR THE DIGITAL CONTROLLER

The prices listed below for electronic parts are, for

the most part, taken from Allied Radio's 1964 Industrial

Electronics Catalog. The quantities upon which the prices

are based are those quantities listed below for one controller.

Quantity

10

3

6

3

1

De sc ription

Chassis aluminum - .090" x l_sq. ft.

Welding - chassis

- front panel

Polishing and anodizing of chassis

and front panel

Miniature DPDT switches

- Alco # MST205N

Rotary switches, 1 pole, 12 position,

ceramic - Centralab type PA2001

Indicating lights plus mounting sockets

- Dialco # 39-28-1433

Knobs

Potentiometer, 1 megohm, linear taper

- Centralab type HML

One sided 2 ounce copper clad fiber-

glass epoxy laminate, Type G-10,

1/16" x 1-3/4 sq. ft.

Price

2.00

6. O0

3. O0

6. O0

22.00

7.11

8.22

•60

2.55

6.00

140
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Quantity

8

ig4

2

186

519

125

33

De sc ription

Printed circuit board connectors, 18

terminal - An_phenol # 143- 018-01

Cable connector, 8 terminal

- Amphenol # 26-4100-8P

ZN404 transistors @ .Z8

2N2646 unijunction transistors @ I. 35

IN462 diodes @ . 30

Resistors, 1/4 watt, 10% @ . 038

Disc capacitors, ,001 Mfd.

- Centralab Series DD (I000 V) @ .I0

Disc capacitors, .005 Mfd.

- Centralab Series CK (50 V) @ .14

E-Z Trimpot, 1 megohm

- Bourns type 3068-P

Tantalum capacitor, 1 50 Mfd., 15 V

Sprague # MIL CSI3-AD 15 IK

Mylar-paper capacitor, 0.1 Mfd. ,

200 V - Sprague # 2TM-PI0

TOTAL

Price

i0.48

i. 02

34, 72

2.70

55.80

19.72

IZ. 50

4.62

i. 65

4.50
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